Principal component analysis of the primordial tensor power spectrum
نویسندگان
چکیده
منابع مشابه
Measuring the primordial power spectrum: Principal component analysis of the cosmic microwave background
We implement and investigate a method for measuring departures from scaleinvariance, both scale-dependent as well as scale-free, in the primordial power spectrum of density perturbations using cosmic microwave background (CMB) Cl data and a principal component analysis (PCA) technique. The primordial power spectrum is decomposed into a dominant scale-invariant Gaussian adiabatic component plus ...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولHolonomy Corrections to the Cosmological Primordial Tensor Power Spectrum
Loop quantum gravity is one of the leading candidate theory to non-perturbatively quantize gravity. In this framework, holonomy corrections to the equation of propagation of gravitons in a FLRW background have been derived. We investigate the consequences of those corrections on the tensor power spectrum in de-Sitter and slow-roll inflations, for n=-1/2. Depending on the value of the Barbero-Im...
متن کاملPrincipal Component Analysis with Tensor Train Subspace
Tensor train is a hierarchical tensor network structure that helps alleviate the curse of dimensionality by parameterizing large-scale multidimensional data via a set of network of low-rank tensors. Associated with such a construction is a notion of Tensor Train subspace and in this paper we propose a TTPCA algorithm for estimating this structured subspace from the given data. By maintaining lo...
متن کاملTensor principal component analysis via convex optimization
This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is supersymmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cosmology and Astroparticle Physics
سال: 2019
ISSN: 1475-7516
DOI: 10.1088/1475-7516/2019/09/055